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A model for the steady state, geometrically non-linear, periodic vibration of thin
rectangular plates under harmonic external excitation is presented. The equations
of motion in the time domain are derived by applying the principle of virtual work
and the hierarchical "nite element method (HFEM). These equations are
transformed into the frequency domain by the harmonic balance method (HBM)
and are solved by a continuation method. The convergence properties of the model
are discussed by applying it to isotropic and to composite laminated plates.

( 1999 Academic Press
1. INTRODUCTION

When thin plates are subjected to large dynamic excitation levels, they can undergo
large-amplitude, geometrical non-linear vibrations. This occurs typically with
aircraft skin-panels, which are subjected to high levels of acoustic pressure and of
aerodynamic forces.

Geometrical non-linear vibrations are modelled by non-linear equations, the
solution of which frequently can be only obtained by iterative methods. In each
iteration, the non-linear matrices are reformulated and, therefore, the time required
to solve the equations of motion increases signi"cantly with the number of degrees
of freedom (d.o.f.) of the model. Consequently, various approximations have been
followed. Often, the solution is considered to be a function of a very limited number
of linear*thus constant*modes, simplifying the response to a function of one or
two variables [1}9].t In references, [10, 11], a modal reduction method was used to
transform the system of equations of motion in physical co-ordinates into normal
co-ordinates, thus reducing the size of the matrices. The normal co-ordinates are
the linear modes, which are determined by using a "nite element method (FEM)
model.
sPresent address: DEMEGI, Faculdade de Engenharia, Universidade do Porto, Rua dos Bragas,
4099 Porto Codex, Portugal.

tIn reference [4] solutions with more than two unknowns are also presented.
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It is well known that, due to the e!ect of the membrane forces, the plate's
mode shapes generally vary with the amplitude of vibration displacement [12}16].
The FEM leads to an accurate spatial model and allows one to describe
the variation of the mode shape of the plate with the amplitude of vibration
displacement. In references [17, 18], a triangular element and the h-version
of the FEM were used to analyze free and forced vibration of an undamped simply
supported plate. The equations of motion were solved by incrementing selectively
the fastest varying characteristic amplitude or the frequency. Two harmonics were
used and loops due to 1 : 3 internal resonances were found. In references [19, 20],
the hierarchical, p-version of the "nite element method was applied to analyze the
consequences of internal resonances on the multi-frequency free vibration of plates.
It was shown that internal resonances result in an important change of the plates
mode shape not only with the amplitude of vibration displacement but also during
the period of vibration. Most of the other applications of the "nite element method
(FEM) to the study of geometrical non-linear vibration of plates, are restricted to
harmonic vibrations [21}28].

In the p-version of the FEM, the accuracy of the approximation is improved by
increasing the number of shape functions over the elements, as opposed to the
h-version in which the mesh is re"ned. If the set of functions corresponding to an
approximation of lower order p, constitutes a subset of the set of functions
corresponding to the approximation of order p#1, then the p-version of the FEM
is called the &&hierarchical "nite element method'' (HFEM). The HFEM usually
requires a fewer degrees of freedom than the h-version of the FEM [14}16, 19, 20,
27}29].

The motion of plates excited by harmonic forces and vibrating with displacement
amplitudes of the order of their thickness is generally periodic [29]
and, consequently, can be analyzed by the harmonic balance method (HBM)
[30}32].

In non-linear vibrations turning and bifurcation points may exist, leading to
regions with multiple solutions. Continuation methods [33] are able to pass
turning points to discover bifurcation points and, in most cases, to follow
secondary branches. Continuation methods are computationally heavier than
other simpler methods, making it even more important to have an accurate model
with a reduced number of d.o.f.

In this paper, the HFEM method is used to construct the geometrical non-linear
spatial model of thin, rectangular, isotropic and composite laminated plates.
The harmonic balance method is applied to transfer the equations of motion
into the frequency domain, which are solved by a continuation method. The
response of the plates to external harmonic excitations is analyzed, concentrating
on the convergence of the solution with the number of harmonics and with
the number of shape functions. Fully clamped boundaries are considered because
they are adequate to model many real panel-type situations, such as aircraft wing
panels [14]. However, the methods presented can be applied to plates with any
boundary conditions. In a companion paper [34], the stability of the solutions and
the e!ects of internal resonances on the steady state forced vibration of plates are
investigated.
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2. EQUATIONS OF MOTION

2.1. HIERARCHICAL FINITE ELEMENT MODEL

The HFEM model presented here was developed in reference [14] and has been
applied to the study of geometrical non-linear free [14}16, 19, 20] and forced
[19, 20] harmonic vibration of plates, and to the free multi-harmonic vibration of
plates [27, 28]. For each element, the middle-plane displacements u

0
, v

0
and w

0
(see

Figure 1) are expressed in the form
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where p
i
and p

o
are the number of in-plane and out-of-plane shape functions used in

the model; MgN and M f N are the vectors of in- and out-of-plane shape functions; Mq
p
N

and Mq
w
N are the generalized in- and out-of-plane displacements and [N] the matrix

of shape functions. The shape functions used are the Rodrigues' form of Legendre
polynomials [14, 19, 29].

For smooth solutions, the introduction of higher order shape functions gives
a greater accuracy per number of d.o.f. than a re"nement of the mesh [35].
Therefore, the whole plate is modelled with one element only and the relation
between the local and global co-ordinates is

m"2x/a, g"2y/b. (5)

The shape functions used satisfy fully clamped boundary conditions. To analyze
plates with di!erent boundary conditions or if more than one element is necessary,
other shape functions*for example third order polynomials as used in the
h-version of the FEM*are added to the model.

Only thin plates are analyzed, and thus the thin plate theory, in which
the transverse shear is neglected, allows accurate prediction of the displacements
Figure 1. (a) Rectangular plate: x, y, and z*global co-ordinate system; u
0

, v
0

and w
0
*middle

plane displacements; a, b and h*plate dimensions. (b) m, g*local co-ordinate system.
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of the plate and will be used. In thin plates, rotatory inertia can also be
neglected [4].

The geometrical non-linearity is expressed by the non-linear strain}displacement
relationships of von KaH rmaH n, which are given by

G
e
x

e
y

c
xy
H"

1 0 0 z 0 0
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0 0 1 0 0 z

MeN"[[I] z[I]]MeN, (6)

where
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N are the linear membrane and bending strains; and Mep

L
N is the

geometrically non-linear membrane strain. They are de"ned as
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where subscript ,x (,y) denotes di!erentiation with respect to x (y).
In this paper, the external forces are applied only in the transverse direction. The

equations of motion are derived by equating the sum of virtual work of the inertia
forces, of the elastic restoring forces and of the external forces to zero. Only
isotropic and symmetric laminated plates will be analyzed; consequently, there is
no coupling between in-plane stretching and transverse bending, i.e., the matrix
usually represented by [B] is equal to zero, and so
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where o denotes the mass density; PM
d
(x, y, t) is the distributed applied force (N/m2)

and X is the area of the plate. [A] and [D] are the membrane and #exural rigidity
matrices given by

(A
ij
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dz, i, j"1, 2 and 6. (10)
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Here C(k)
ij

are the reduced sti!nesses of the kth layer, which can be obtained from E
L
,

E
T
, the major and minor Young's moduli, the Poisson ratios v

LT
and v

TL
and the

shear modulus G
LT

[4]. ¸ and ¹ denote the principal directions of the orthotropic
plate layer. For isotropic plates, matrices [A] and [D] are simpli"ed to
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2
(1!v)

and [D]"
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12
[A]. (11, 12)

Substituting equations (8) into equation (9) and allowing the virtual generalized
displacements to be arbitrary gives
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[M
p
] and [M

b
] are the in-plane and bending inertia matrices; [K

1p
and [K

1b
] the

in-plane and bending linear sti!ness matrices; [K
2
], [K

3
] and [K

4
] the non-linear

sti!ness matrices and MPM N is the vector of generalized external forces. [K
2
] and

[K
3
] depend linearly on Mq

w
N and [K

4
] depends quadratically on Mq

w
N. All

submatrices in equation (13) are symmetric except [K
2
] and [K

3
], which are

related by [K
3
]"2[K

2
]T [14].

Upon neglecting the middle-plane in-plane inertia, and thus eliminating the
in-plane generalized displacements, and introducing mass proportional hysteretic
damping the following equations of motion are obtained:

[M
b
] MqK

w
N#(b/u) [M
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]MqR
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Here [Knl]"[K
4
]!2[K

2
]T[K

1p
]~1[K

2
] is a quadratic function of the

transverse generalized displacements, Mq
w
N. The non-linearity is thus of the cubic

type and the system of equations (14) is a system of Du$ng equations.
The damping factor b is given by

b"au2
l1

, (15)

where u
l1

is the "rst linear resonance frequency.

2.2. HARMONIC BALANCE METHOD

The excitations considered will be of the form MPM N"MPN cos(ut). Numerical,
experimental and analytical investigations con"rm that plates vibrating with
displacement amplitudes of the order of their thickness due to excitation by
harmonic forces, usually experience periodic motion [29]. In this paper, only
periodic motions are analyzed and the harmonic balance method will be applied.



960 P. RIBEIRO AND M. PETYT
Consequently, the steady state response Mq
w
(t)N is expressed as

Mq
w
(t)N"

2k~1
+

i/1,3 ,2

Mw
ci
N cos(iut)#Mw

si
N sin(iut). (16)

Because the non-linearity is cubic, only odd harmonics are taken into account.
Equation (16) is inserted into the equations of motion (14) and the coe$cients of the
same harmonic components are compared (thus the designation harmonic balance).
The resulting equations of motion in the frequency domain are of the form

MFN"(!u2[M]#[C]#[K¸]#[KN¸])MwN!MPN"M0N. (17)

In equation (17), [M] represents the mass matrix, [C] represents the damping
matrix and [K¸] represents the linear sti!ness matrix. These matrices are constant.
[KN¸] represents the non-linear sti!ness matrix, which is formed by
a combination of [K

4
] and [K

2
] and depends quadratically on the vector of

generalized displacements MwNT"xw
c1

w
s1

w
c3

w
s32

w
ci

w
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y. The high order

integrals involved in calculating the matrices in equation (17) are accurately
evaluated by using symbolic computation [36], which is also helpful in the
application of the harmonic balance method [27].

The total number of d.o.f. of the model, n, is given by n"2kp2
o
, for a damped

model, or n"kp2
o
, for an undamped model, where k represents the number of

harmonics.
The form of the matrices in equation (17) depends on the number of harmonics

chosen. For example, for damped systems and when two harmonics are considered,
one has
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By substituting expression (18) into the equations of motion (14) and neglecting
harmonics higher than 3ut, the following linear matrices are derived:
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Also, by applying the trigonometric relations given in Appendix A, the followin
non-linear sti!ness matrix [KN¸] is obtained;
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The matrices [KN¸
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] are of the form
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The vector of generalized displacements is, in the two harmonics case, de"ned as

MwN"G
w
c1

w
s1

w
c3

w
s3
H . (24)

2.3. SOLUTION OF THE EQUATIONS OF MOTION

A continuation method originally proposed by Riks [37] and Cris"eld [38] to
study buckling phenomena and adopted by Lewandowski [39}41] to the study of
free and forced vibration of beams will be used to solve the equations of motion
(17). This method has also been applied in the study of free and steady state forced
harmonic vibration [27, 28] and of periodic, multi-harmonic free vibration [19, 20]
of isotropic and composite laminated plates.

The continuation method is composed of two main loops. In the external loop,
a predictor to the solution is de"ned, using the two last determined points of the
backbone curve. In the internal loop, the approximated solution is corrected by
applying Newton's method to equation (17), considering variations not only in the
generalized co-ordinate but also in the frequency of vibration. Thus, the following
equation is solved:

[J] MdwN![M] MwNdu2"!MFN. (25)

MdwN and du2 represent, respectively, the corrections of the vector of generalized
displacements and of the square of the frequency of vibration.

In equation (25) there are n variables and n#1 unknowns, and another equation
is needed. Turning points of the backbone curve are passed as long as an adequate
parameter is chosen. The parameter adopted is the arc-length s, which is obtained
by constraining the distance between the two successive points of the FRF curve to
a "xed value by the constraint equation

s2"EDMwNE2. (26)

The iterations are repeated until the inequalities

D du2/u2 D(error1, EMdwNE/EMwNE(error2, EMFNE(error3,

(27}29)

are satis"ed

Matrix DJ D in equation (25) is the Jacobian matrix, de"ned as

[J]"LMFN/LMwN. (30)
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From equation (17), it results that [J] is

[J]"!u2[M]#[C]#[K¸]#L[KN¸]MwN/LMwN. (31)

By applying variations, it can be demonstrated that [29]

d ([KN¸]MwN)"(3[KN¸K4]#2[KN¸K2])dMwN#d[KN¸K2]MwN, (32)

where [KN¸K4] represents the parts of [KN¸] related to [K
4
], and [KN¸K2]

represents the parts of [KN¸] related to [K
2
].

In order to have an explicit expression for the Jacobian matrix, the following
approximation will be used:

d[KN¸K2]MwN:[KN¸K2]dMwN. (33)

Thus one has

L[KN¸] MwN/LMwN:3[KN¸] (34)

and

[J]:!u2[M]#[C]#[K¸]#3[KN¸]. (35)

If the middle-plan in-plane displacements are not included in the model, [K
2
]

does not exist and the former approximations are exact.
In the resolution of non-linear systems by Newton-type methods, the Jacobian

may be unknown or may be very time-consuming to update in each iteration. Thus,
it is common to use approximations to the Jacobian instead of the Jacobian itself
[42, 43]. As the error criteria must be satis"ed, the solution obtained with an
approximated Jacobian is still accurate. In this particular case, it is important to
verify if the equilibrium equations are satis"ed, as is done in equation (29).

3. CONVERGENCE STUDIES

It is intended to demonstrate that the model presented requires a small number
of degrees of freedom for accuracy. Therefore, the convergence of the steady state
TABLE 1

¸inear natural frequencies (rad/s) (p
o
"7)

Mode 1 2 3 4 5 6 7

Plate 1 579)442 1134)75 1227)31 1741)64 2011)37 2232)23 2587)96

Plate 2 763)097 1419)93 1647)38 2219)17 2650)82 2865)34 3194)66



Figure 2. Amplitude of "rst harmonic of Plate 1 calculated with: s, 1 harmonic; e, 2 harmonics; #,
three harmonics; at (m, g)"(0, 0). p

o
"5, p

i
"8.

Figure 3. Amplitude of "rst harmonic of Plate 1 calculated with: s, 1 harmonic; e, 2 harmonics; #,
three harmonics; at (m, g)"(0)5, 0)5). p

o
"5, p

i
"8.
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Figure 4. Amplitude of third harmonic of Plate 1 calculated with: e, 2 harmonics; #, three
harmonics; at (m, g)"(0, 0). p

o
"5, p

i
"8.

Figure 5. Amplitude of third harmonic of Plate 1 calculated with: e, 2 harmonics; #, three
harmonics; at (m, g)"(0)5, 0)5). p

o
"5, p

i
"8.
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Figure 6. Amplitude of "rst harmonic of Plate 2 calculated with: s, 1 harmonic; e, 2 harmonics; #,
three harmonics; at (m, g)"(0, 0). p

o
"5, p

i
"10.

Figure 7. Amplitude of "rst harmonic of Plate 2 calculated with: s, 1 harmonic; e, 2 harmonics; #,
three harmonics; at (m, g)"(0)5, 0)5). p

o
"5, p

i
"10.
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Figure 8. Amplitude of third harmonic of Plate 2 calculated with: e, 2 harmonics; #, three
harmonics; at (m, g)"(0, 0). p

o
"5, p

i
"10.

Figure 9. Amplitude of third harmonic of Plate 2 calculated with: e, 2 harmonics; #, three
harmonics; at (m, g)"0)5, 0)5). p

o
"5, p

i
"10.
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Figure 10. Amplitude of "rst harmonic of Plate 1 calculated with p
i
"10 and: s, p

o
"5; e, p

o
"6;

#, p
o
"7 (m, g)"(0, 0).

Figure 11. Amplitude of "rst harmonic of Plate 1 calculated with p
i
"10 and: s, p

o
"5; e, p

o
"6;

#, p
o
"7. (m, g)"(0)5, 0)5).
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solutions with the number of harmonics and with the number of shape functions is
investigated in the next sections.

Two plates are studied, one is isotropic (aluminium DTDSO 70)*Plate 1*and
the other is a composite laminated plate (graphite/epoxy)*Plate 2. Plate 1 has the
dimensions a"300 mm, b"320 mm, h"1 mm, and the material properties
E"7]1010 N/m2, o"2778 kg/m3, v"0)34. Plate 2 has "ve layers, with the
following orientation of principal axes (453, !453, 453, !453, 453). Its dimensions
are a"300 mm, b"300 mm, h"1 mm, and each layer has the material
properties E

L
"173)0 GN/m2, E

T
"E

L
/15)4 GN/m2, G

LT
"0)79 E

T
GN/m2,

v
LT

"0)3, o"1540 kg/m3.
Aluminium is generally used in commercially aircraft and composite laminated

plates are more widely used in military aircraft, particularly in smaller size planes
[44].

The linear natural frequencies of both plates are given in Table 1.
Figure 12. Amplitude of third harmonic of Plate 1 calculated with p
i
"10 and: s, p

o
"5; e, p

o
"6;

#, p
o
"7 (m, g)"(0, 0).



Figure 13. Amplitude of third harmonic of Plate 1 calculated with p
i
"10 and: s, p

o
"5; e, p

o
"6;

#, p
o
"7. (m, g)"(0)5, 0)5).

Figure 14. Amplitude of "rst harmonic of Plate 1 calculated with (m, g)"(0, 0) with p
o
"5 and:

!p
i
"0; e, p

i
"5; #, p

i
"8; s, p

i
"10.
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3.1. CONVERGENCE WITH THE NUMBER OF HARMONICS

The convergence of the frequency response functions of Plates 1 and 2 with the
number of harmonics used in equation (16) is investigated. The plates are excited by
a harmonic plane wave at normal incidence and damping is neglected. The mass
matrix [M], the linear sti!ness matrix [K¸] and the non-linear sti!ness matrix
[KN¸] are explicitly given in references [19, 20].

The amplitudes of the "rst and third harmonics are given by the expressions

=
1
"Jw2

c1
#w2

s1
, =

3
"Jw2

c3
#w2

s3
, (36, 37)

where w
c1

, w
s1

, w
c3

and w
s3

are, in this order, the amplitudes of the cosine and sine
terms of the "rst and third harmonics. Thus,=

1
and=

3
are always positive. The

sine terms are zero in the case of undamped vibration.
Figure 15. Amplitude of "rst harmonic of Plate 1 calculated with (m, g)"(0)5, 0)5) with p
o
"5 and:

!p
i
"0; e, p

i
"5; #, p

i
"8; s, p

i
"10.
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Plate 1 was excited with a wave of 5 N/m2 amplitude. Figures 2}5 show
the variation of the amplitude of the "rst and third harmonics with frequency
(i.e., the frequency response functions (FRF) of the "rst and third harmonics). The
amplitudes were calculated at the points indicated by the non-dimensional
co-ordinates (m, g). The one-harmonic approximation gives remarkably poor
results: its solutions deviate from the two- and three-harmonic solutions when the
frequency of vibration approaches the "rst natural frequency and for quite low
amplitudes, as shown in Figures 2 and 3. Moreover, it neglects the third harmonic
which attains quite large vibration amplitudes: Figures 4 and 5. When using two
and three harmonics in the time series, almost coincident results are obtained.
Therefore, a model with two harmonics will be used in the study of Plate 1.

Figures 6}9 show the frequency-response functions of the "rst and third
harmonics of Plate 2, when this is excited by a wave with 4 N/m2 amplitude.
Under these conditions, the one harmonic approximation gives a reasonable
approximation for the amplitude of vibration of the plate at point (m, g)"(0, 0) and
a bad approximation for the amplitude of vibration at point (m, g)"(0)5, 0)5). In
this last point, the one-harmonic solution deviates from the two- and
three-harmonics solutions as soon as the frequency of vibration approaches
the "rst natural frequency and for quite low amplitudes. With two and three
harmonics, similar results were obtained and two harmonics will be used in the
following analyses of Plate 2.
Figure 16. Amplitude of third harmonic of Plate 1 calculated with (m, g)"(0, 0) with p
o
"5 and:

!p
i
"0; e, p

i
"5; #, p

i
"8; s, p

i
"10.



974 P. RIBEIRO AND M. PETYT
Although two harmonics were enough for convergence in the present analysis, it
should be pointed out that if the excitation has a component similar to a higher
order mode with a natural frequency near k times the "rst resonance frequency, this
mode may be excited due to internal resonance. In this case, as suggested in
reference [45], it may be necessary to include the kth harmonic in the time series.
Internal resonance is discussed in the second part of this paper.

3.2. CONVERGENCE WITH THE NUMBER OF SHAPE FUNCTIONS

The FRFs of Plate 1 due to a harmonic excitation at normal incidence with an
amplitude of 5 N/m2 were calculated by using di!erent numbers of out-of-plane
and in-plane shape functions. The damping factor b was calculated by expression
(15) with a"0)01.
Figure 17. Amplitude of third harmonic of Plate 1 calculated with (m, g)"(0)5, 0)5) with p
o
"5 and:

!p
i
"0; e, p

i
"5; #, p

i
"8; s, p

i
"10.



Figure 18. Amplitude of "rst harmonic of Plate 2 calculated with p
o
"10 and: s, p

o
"5; e, p

o
"6;

#, p
o
"7. (m, g)"(0, 0).

Figure 19. Amplitude of "rst harmonic of Plate 2 calculated with p
i
"10 and: s, p

o
"5; e, p

o
"6;

#, p
o
"7. (m, g)"(0)5, 0)5).
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Figure 20. Amplitude of third harmonic of Plate 2 calculated with p
i
"10 and: s, p

o
"5; e, p

o
"6;

#, p
o
"7. (m, g)"(0, 0).

Figure 21. Amplitude of third harmonic of Plate 2 calculated with p
i
"10 and: s, p

o
"5; e, p

o
"6;

#, p
o
"7. (m, g)"(0)5, 0)5).
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In Figures 10}13 the FRFs obtained with di!erent number of out-of-plane shape
functions are compared. Ten in-plane shape functions were used in all the models.
Five out-of-plane shape functions, i.e., 100 d.o.f., provide an exact approximation of
the "rst harmonic and a very good approximation of the third harmonic.

In Figures 14}17, the FRFs obtained with di!erent number of in-plane shape
functions are compared. The exclusion of the middle-plane in-plane displacements
(p

i
"0), makes the hardening spring e!ect of both harmonics more severe. Five

in-plane shape functions give accurate values for the "rst harmonic. The third
harmonic is approximately well calculated with "ve in-plane shape functions, and
very accurately calculated with eight in-plane shape functions.

The FRFs of Plate 2 due to a harmonic excitation at normal incidence with an
amplitude of 4 N/m2 were calculated by using di!erent numbers of out-of-plane
and in-plane shape functions. The damping factor b was calculated by expression
(15) with a"0)01.

In Figures 18}21, the frequency-response functions of Plate 2, calculated with
di!erent numbers of out-of-plane shape functions are compared. Ten in-plane
shape functions were used in all the models. With "ve out-of-plane shape functions,
i.e., 100 d.o.f., accurate results are obtained.

If the middle-plane in-plane displacements are not considered (p
i
"0), the

resonance frequency increases more with the "rst-harmonic amplitude: see Figures
22}23. The maximum amplitude of vibration of the "rst harmonic is equivalent
Figure 22. Amplitude of "rst harmonic of Plate 2 calculated with p
o
"5 and: s, p

i
"0; h, p

i
"7;

#, p
i
"8; e, p

i
"10; (m, g)"(0, 0).



Figure 23. Amplitude of "rst harmonic of Plate 2 calculated with p
o
"5 and: s, p

i
"0; h, p

i
"7; #,

p
i
"8; e, p

i
"10; (m, g)"(0)5, 0)5).
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with or without middle plane in-plane displacements. Eight in-plane shape
functions give accurate values for the "rst harmonic.

Figures 24}25 display the FRFs of the third harmonic of Plate 2 calculated
with a di!erent number of in-plane shape functions. The exclusion of the
middle-plane in-plane displacements is more important in the calculation of
the third harmonic than in the "rst. The amplitude of vibration for the third
harmonic is largely overpredicted if the middle-plane in-plane displacements are
neglected. The third harmonic is well calculated with seven in-plane shape
functions.

4. CONCLUSIONS

A model for geometrical non-linear, steady state, multi-harmonic vibration of
isotropic and composite laminated rectangular plates was developed by using the
HFEM and the HBM.



Figure 24. Amplitude of third harmonic of Plate 2 calculated with p
o
"5 and: s, p

i
"0; h, p

i
"7;

#, p
i
"8; e, p

i
"10. (m, g)"(0, 0).
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The convergence of the frequency-response functions with the number of
harmonics was studied. The two- and three-harmonic approximations produced
very similar results, indicating that the "fth and higher harmonics can be neglected
in the analysis of rectangular plates excited by harmonic plane waves. However,
this will not be true if a higher order mode is excited due to internal resonance.

The convergence of the frequency-response functions with the number of
out-of-plane and of in-plane shape functions was investigated. More in-plane than
out-of-plane shape functions are necessary for convergence. The in-plane shape
functions are associated with the in-plane displacements and, therefore, their
importance increases with the amplitude of vibration displacement.

The convergence studies indicate that the HFEM and HBM allow one to model
the geometrical non-linear, forced, periodic vibrations of plates accurately and with
a small number of d.o.f.



Figure 25. Amplitude of third harmonic of Plate 2 calculated with p
o
"5 and: s, p

i
"0; h, p

i
"7;

#, p
i
"8; e, p

i
"10. (m, g)"(0)5, 0)5).
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APPENDIX A: TRIGONOMETRIC RELATIONS
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